
Week 1 - Friday

 What did we talk about last time?
 Java features
 if and switch statements
 Loops
 Arrays
 Static methods

 Write a method with the following signature that converts a
String representation of an integer into an int value

 public static int parseInt(String value)

 You're allowed to have two different methods with the same
name, in the same class

 Doing so is called overloading
 However, the methods must either have a different number of

parameters or different types of parameters so that the
compiler can tell which one you're calling

 Two max() methods, one that finds the maximum of two
values and another that finds the maximum of three

public static int max(int a, int b) {
if(a > b)

return a;
else

return b;
}

public static int max(int a, int b, int c) {
if(a > b && a > c)

return a;
else if(b > a && b > c)

return b;
else

return c;
}

 Variables that hold object types are called
references

 A primitive variable holds a value
 A reference variable merely points to the

location of the object

ham1
Ham ham2 = ham1;

ham2

 If we tell ham2 to take a bite away, it will
affect the ham pointed at by ham1

 Remember, they are the same ham!

ham1
ham2.bite();

ham2

 Now consider int variables x and y, both with value 37
 If we change x, it only affects x
 If we change y, it only affects y

int x = 37;
int y = x;
x++;
y--;

y
37

x
3738 36

 If you declare a lot of references, you have not created any
objects, just lots of arrows (unlike primitive types)

Eggplant aubergine;
DumpTruck truck1;
Idea thought;

aubergine truck1 thought

 To call a constructor, you use the new keyword with the name
of the class followed by parentheses:

 Perhaps there is a Ham constructor that lets you take a
double that is the number of pounds that the ham weighs:

Ham ham1 = new Ham(); // Default constructor

Ham ham2 = new Ham(4.2); //weight constructor

 To call methods on objects
 Type the name of the object
 Put a dot
 Type the method name, with the arguments in parentheses:

String s = new String("Help me!");
char c = s.charAt(3); //c gets 'p'
Ham h = new Ham(3.2);
h.bite(); // Takes bite out of ham
double weight = h.getWeight(); //Gets current ham weight

 In this example, the == operator will say they are different, but the equals() method
will say that they are the same

 Every object has an equals() method
 Always call equals() to see if too objects are identical
 Only use == if you want to see if the two references are pointing at the exact same object

String s1 = new String("identical");
String s2 = new String("identical");
if(s1 == s2)
System.out.println("Same!");

else
System.out.println("Different!");

if(s1.equals(s2))
System.out.println("Same!");

else
System.out.println("Different!");

 An object is the actual data that you can use in your code
 A class is a template whereby you can create objects of a

certain kind
 Class = Car
 Object = Mitsubishi Lancer Evolution X

 Just like int is a type and 34 is an instance of that type
 A key difference is that you can define new classes
 Classes contain members and methods

public class Name {
private int member1;
private double member2;
private Hedgehog member3;

public Name() {

…
}

public int method1(double x){

…
}

}

Class definition

Member
declarations

Constructor
definition

Method
definition

 Members are the actual data inside an object
 They can be primitive types or other object types
 They are usually hidden (private) from the outside world

public class Point {
private double x; // member variable
private double y; // member variable

}

 private and public allow you to specify the scope or
permissions of members and methods

 privatemeans that only methods from the same class can
access an item

 publicmeans that any method can access the item
 protectedmeans that classes in the package and child classes

can access the data (but not someone outside of the inheritance
hierarchy)

 No modifier means "package private" or default
 Only code in the same package can access the item
 More restrictive than public and protected but less restrictive than
private

 Methods allow you to do things
 Object methods usually allow you to manipulate the members
 They are usually visible (public) to the outside world
 Methods can be static or non-static
 Only non-static methods can interact with the members of an

object

 Constructors are a special kind of method
 They allow you to customize an object with particular

attributes when it is created

public class Point {
private double x; // member variable
private double y; // member variable

//constructor
public Point(double newX, double newY){

x = newX;
y = newY;

}
}

 Because members are usually private, it is common to use
methods specifically just to find out what their values are

 A method that just returns the value of a member variable is
called an accessor

public double getX() { //accessor for x
return x;

}

public double getY() { //accessor for y
return y;

}

 Again, because members are usually private, it is common
to use methods specifically just to change their values

 A method that just changes the value of a member variable is
called a mutator

public void setX(double newX) { //mutator for x
x = newX;

}

public void setY(double newY) { //mutator for y
y = newY;

}

 Static members are stored with the class, not with the object
public class Item {

private static int count = 0; // one copy total
private String name; // one copy per object

public Item(String s) {
name = s;
++count; // updates global counter

}

public String getName() { return name; }

public static int getItemsInUniverse() {
return count;

}
}

 Static members are also called class variables
 Static members can be accessed by either static methods or

regular methods (unlike normal members which cannot be
accessed by static methods)

 Static members can be either public or private

 Sometimes a value will not change after an object has been
created:
 Example: A ball has a single color after it is created

 You can enforce the fact that the value will not change with
the final keyword

 A member declared final can only be assigned a value once
 Afterwards, it will never change

 An enum is a special kind of class that has pre-defined constant objects
 These objects are intended to represent a fixed collection of named

things:

 Individual days can be referenced like static variables: Day.MONDAY or
Day.FRIDAY

 Since enum values are constants, it's convention to name them in ALL
CAPS

public enum Day {
SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY

}

 Enums can be used in switch statements to make decisions

 Note that only the value (SUNDAY) not the full name (Day.SUNDAY) is
used

 This kind of behavior makes enums a useful way to record state
information with a fixed number of values

switch(day) {
case SUNDAY: System.out.println("Ice Cream"); break;
case MONDAY: System.out.println("Garfield"); break;
case TUESDAY: System.out.println("Taco"); break;
case WEDNESDAY: System.out.println("Addams"); break;
case THURSDAY: System.out.println("Throwback"); break;
case FRIDAY: System.out.println("I'm in Love"); break;
case SATURDAY: System.out.println("Surf NYC"); break;
}

 Though they aren't often useful, enums have some
information baked into them
 You can use the static values()method on the enum class to get

an array containing all the enum values
 You can call the ordinal()method on an enum object to get its

zero-based numbering in the list
 You can pass a String into the static valueOf()method to

retrieve the enum object with a given name

 Sometimes it's useful to iterate over all the enum values
 Or get their number
 Or map a name to the enum value, but that will crash if you

don't spell them right

Day[] days = Day.values();
for(Day day : days)

System.out.println(day + " has index " + day.ordinal());

Day manic = Day.valueOf("MONDAY");
Day iDontHaveToRun = Day.valueOf("SUNDAY");
Day francais = Day.valueOf("DIMANCHE"); // Crashes!

 People usually use enums
simply as lists of constant
values

 However, enums are
actually full classes whose
objects can contain
constant data and methods

 Note that the data inside
can't be changed

public enum Planet {
MERCURY(2440, 3.3E23, 5.79E7),
VENUS(6052, 4.9E24, 1.08E8),
EARTH(6371, 6.0E24, 1.50E8),
MARS(3390, 6.4E23, 2.28E8),
JUPITER(69911, 1.9E27, 7.78E8),
SATURN(58232, 5.7E26, 1.42E9),
URANUS(25362, 8.7E25, 2.87E9),
NEPTUNE(24622, 1.0E26, 4.50E9);

private int radius; // km
private double mass; // kg
private double distance; // km

 Here are the methods for the Planet enum from the previous slide

private Planet(int radius, double mass, double distance) {
this.radius = radius;
this.mass = mass;
this.distance = distance;

}
public int getRadius() {

return radius;
}
public double getMass() {

return mass;
}
public double getDistance() {

return distance;
}

}

 To organize classes, they are often inside of packages
 This approach allows to tell the difference between two different

classes with the same name that are in different libraries:
 java.util.List is the interface for list data structures
 java.awt.List is a class that stores GUI lists

 Packages correspond to folders with the same names
 Most packages are inside of other packages
 The default package (no package) should not be used for

professional programming
 Since we are transitioning in this class, look carefully at

assignment requirements for packages

 By convention, class names (and interface, enum, and
exception names) start with uppercase letters, such as
ArrayList

 Packages should be written in lowercase letters, such as
java.util

 Periods are used to separate the parent packages from their
child packages

 A common convention is to use the reversed domain name of
your company or institution to make your packages unique
 We would be edu.otterbein

 When importing, you can import all of the classes in a package
with an asterisk:
 import java.util.*;

 However, the asterisk does not import the classes in any sub-
packages

 If you want to import two classes that have the same name, one of
them has to be called by its fully qualified name
 In other words, you can't import java.util.* and java.awt.*

because it wouldn't know which you mean when you say List
 You could import java.util.* and refer in code to java.awt.List

(which is ugly but doesn't happen too often)
 All classes in java.lang are automatically imported

 Are you tired of how verbose it is to write System.out.println() or
Math.sqrt()?

 A feature called static imports allows you to access static methods and
members without specifying the class name

 If you put this at the top of your program:

 You could write this:

 Instead of this:

import static java.lang.Math.*;
import static java.lang.System.*;

out.println(sqrt(3));

System.out.println(Math.sqrt(3));

 No class on Monday!
 Next Wednesday, we'll talk about interfaces

 Read Chapter 10
 Pick your teammates for Project 1
 Afternoon office hours canceled today due to meetings
 Office hours canceled next Tuesday between 3 and 4 p.m. due

to meetings

	COMP 2000
	Last time
	Questions?
	Project 1
	Method practice
	Overloading
	Overloading example
	Objects
	Reference types
	Reference variables
	Compared to primitive variables
	A reference is just an arrow
	Invoking the constructor
	Calling methods
	Equivalence confusion
	Classes
	Templates for objects
	Anatomy of a class definition
	Members are data inside an object
	Data visibility
	Methods are ways to interact with objects
	Constructors
	Accessors
	Mutators
	Class Variables
	Static members
	Static rules
	Members can be constant
	Enums
	Enums
	Enums in switch statements
	Special enum features
	Enum feature examples
	Enums as full classes
	Enum continued
	Packages
	Classes are files, packages are folders
	Package conventions
	Imports
	Static imports
	Upcoming
	Next time…
	Reminders

