
Week 1 - Friday



 What did we talk about last time?
 Java features
 if and switch statements
 Loops
 Arrays
 Static methods







 Write a method with the following signature that converts a 
String representation of an integer into an int value

 public static int parseInt(String value)



 You're allowed to have two different methods with the same 
name, in the same class

 Doing so is called overloading
 However, the methods must either have a different number of 

parameters or different types of parameters so that the 
compiler can tell which one you're calling



 Two max() methods, one that finds the maximum of two 
values and another that finds the maximum of three

public static int max( int a, int b ) {
if( a > b )

return a;
else

return b;
}

public static int max( int a, int b, int c ) {
if( a > b && a > c )

return a;
else if( b > a && b > c )

return b;
else

return c;
}





 Variables that hold object types are called 
references

 A primitive variable holds a value
 A reference variable merely points to the 

location of the object

ham1
Ham ham2 = ham1;

ham2



 If we tell ham2 to take a bite away, it will 
affect the ham pointed at by ham1

 Remember, they are the same ham!

ham1
ham2.bite();

ham2



 Now consider int variables  x and y, both with value 37
 If we change x, it only affects x
 If we change y, it only affects y

int x = 37;
int y = x;
x++;
y--;

y
37

x
3738 36



 If you declare a lot of references, you have not created any 
objects, just lots of arrows (unlike primitive types)

Eggplant aubergine;
DumpTruck truck1;
Idea thought;

aubergine truck1 thought



 To call a constructor, you use the new keyword with the name 
of the class followed by parentheses:

 Perhaps there is a Ham constructor that lets you take a 
double that is the number of pounds that the ham weighs:

Ham ham1 = new Ham(); // Default constructor

Ham ham2 = new Ham( 4.2 ); //weight constructor



 To call methods on objects
 Type the name of the object
 Put a dot
 Type the method name, with the arguments in parentheses:

String s = new String("Help me!");
char c = s.charAt(3); //c gets 'p'
Ham h = new Ham(3.2);
h.bite(); // Takes bite out of ham
double weight = h.getWeight(); //Gets current ham weight



 In this example, the == operator will say they are different, but the equals() method 
will say that they are the same

 Every object has an equals() method
 Always call equals() to see if too objects are identical
 Only use == if you want to see if the two references are pointing at the exact same object

String s1 = new String("identical");
String s2 = new String("identical");
if( s1 == s2 )
System.out.println("Same!");

else
System.out.println("Different!");

if( s1.equals( s2 ) )
System.out.println("Same!");

else
System.out.println("Different!");





 An object is the actual data that you can use in your code
 A class is a template whereby you can create objects of a 

certain kind
 Class = Car
 Object = Mitsubishi Lancer Evolution X

 Just like int is a type and 34 is an instance of that type
 A key difference is that you can define new classes
 Classes contain members and methods



public class Name {
private int member1;
private double member2;
private Hedgehog member3;

public Name() {

…
}

public int method1( double x ){

…
}

}

Class definition

Member 
declarations

Constructor 
definition

Method
definition



 Members are the actual data inside an object
 They can be primitive types or other object types
 They are usually hidden (private) from the outside world

public class Point {
private double x; // member variable
private double y; // member variable

}



 private and public allow you to specify the scope or 
permissions of members and methods

 privatemeans that only methods from the same class can 
access an item

 publicmeans that any method can access the item
 protectedmeans that classes in the package and child classes 

can access the data (but not someone outside of the inheritance 
hierarchy)

 No modifier means "package private" or default
 Only code in the same package can access the item
 More restrictive than public and protected but less restrictive than 
private



 Methods allow you to do things
 Object methods usually allow you to manipulate the members
 They are usually visible (public) to the outside world
 Methods can be static or non-static
 Only non-static methods can interact with the members of an 

object



 Constructors are a special kind of method
 They allow you to customize an object with particular 

attributes when it is created

public class Point {
private double x; // member variable
private double y; // member variable

//constructor
public Point( double newX, double newY ){

x = newX;
y = newY;

}
}



 Because members are usually private, it is common to use 
methods specifically just to find out what their values are

 A method that just returns the value of a member variable is 
called an accessor

public double getX() { //accessor for x
return x;

}

public double getY() { //accessor for y
return y;

}



 Again, because members are usually private, it is common 
to use methods specifically just to change their values

 A method that just changes the value of a member variable is 
called a mutator

public void setX( double newX ) { //mutator for x
x = newX;

}

public void setY( double newY ) { //mutator for y
y = newY;

}





 Static members are stored with the class, not with the object
public class Item {

private static int count = 0; // one copy total
private String name; // one copy per object

public Item( String s ) {
name = s;
++count; // updates global counter

}

public String getName() { return name; }

public static int getItemsInUniverse() {
return count;

}
}



 Static members are also called class variables
 Static members can be accessed by either static methods or 

regular methods (unlike normal members which cannot be 
accessed by static methods)

 Static members can be either public or private



 Sometimes a value will not change after an object has been 
created:
 Example:  A ball has a single color after it is created

 You can enforce the fact that the value will not change with 
the final keyword

 A member declared final can only be assigned a value once
 Afterwards, it will never change





 An enum is a special kind of class that has pre-defined constant objects
 These objects are intended to represent a fixed collection of named 

things:

 Individual days can be referenced like static variables: Day.MONDAY or 
Day.FRIDAY

 Since enum values are constants, it's convention to name them in ALL 
CAPS

public enum Day {
SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, 
SATURDAY

}



 Enums can be used in switch statements to make decisions

 Note that only the value (SUNDAY) not the full name (Day.SUNDAY) is 
used

 This kind of behavior makes enums a useful way to record state 
information with a fixed number of values

switch(day) {
case SUNDAY: System.out.println("Ice Cream"); break;
case MONDAY: System.out.println("Garfield"); break;
case TUESDAY: System.out.println("Taco"); break;
case WEDNESDAY: System.out.println("Addams"); break;
case THURSDAY: System.out.println("Throwback"); break;
case FRIDAY: System.out.println("I'm in Love"); break;
case SATURDAY: System.out.println("Surf NYC"); break;
}



 Though they aren't often useful, enums have some 
information baked into them
 You can use the static values()method on the enum class to get 

an array containing all the enum values 
 You can call the ordinal()method on an enum object to get its 

zero-based numbering in the list
 You can pass a String into the static valueOf()method to 

retrieve the enum object with a given name



 Sometimes it's useful to iterate over all the enum values
 Or get their number
 Or map a name to the enum value, but that will crash if you 

don't spell them right

Day[] days = Day.values();
for(Day day : days)

System.out.println(day + " has index " + day.ordinal());

Day manic = Day.valueOf("MONDAY");
Day iDontHaveToRun = Day.valueOf("SUNDAY");
Day francais = Day.valueOf("DIMANCHE"); // Crashes!



 People usually use enums
simply as lists of constant 
values

 However, enums are 
actually full classes whose 
objects can contain 
constant data and methods

 Note that the data inside 
can't be changed

public enum Planet {
MERCURY(2440, 3.3E23, 5.79E7),
VENUS(6052, 4.9E24, 1.08E8),
EARTH(6371, 6.0E24, 1.50E8),
MARS(3390, 6.4E23, 2.28E8),
JUPITER(69911, 1.9E27, 7.78E8),
SATURN(58232, 5.7E26, 1.42E9),
URANUS(25362, 8.7E25, 2.87E9),
NEPTUNE(24622, 1.0E26, 4.50E9);

private int radius;      // km
private double mass; // kg
private double distance; // km



 Here are the methods for the Planet enum from the previous slide

private Planet(int radius, double mass, double distance) {
this.radius = radius;
this.mass = mass;
this.distance = distance;

}
public int getRadius() {

return radius;
}
public double getMass() {

return mass;
}
public double getDistance() {

return distance;
}

}





 To organize classes, they are often inside of packages
 This approach allows to tell the difference between two different 

classes with the same name that are in different libraries:
 java.util.List is the interface for list data structures
 java.awt.List is a class that stores GUI lists

 Packages correspond to folders with the same names
 Most packages are inside of other packages
 The default package (no package) should not be used for 

professional programming
 Since we are transitioning in this class, look carefully at 

assignment requirements for packages



 By convention, class names (and interface, enum, and 
exception names) start with uppercase letters, such as 
ArrayList

 Packages should be written in lowercase letters, such as 
java.util

 Periods are used to separate the parent packages from their 
child packages

 A common convention is to use the reversed domain name of 
your company or institution to make your packages unique
 We would be edu.otterbein



 When importing, you can import all of the classes in a package 
with an asterisk:
 import java.util.*;

 However, the asterisk does not import the classes in any sub-
packages

 If you want to import two classes that have the same name, one of 
them has to be called by its fully qualified name
 In other words, you can't import java.util.* and java.awt.*

because it wouldn't know which you mean when you say List
 You could import java.util.* and refer in code to java.awt.List

(which is ugly but doesn't happen too often)
 All classes in java.lang are automatically imported



 Are you tired of how verbose it is to write System.out.println() or 
Math.sqrt()?

 A feature called static imports allows you to access static methods and 
members without specifying the class name

 If you put this at the top of your program:

 You could write this:

 Instead of this:

import static java.lang.Math.*;
import static java.lang.System.*;

out.println(sqrt(3));

System.out.println(Math.sqrt(3));





 No class on Monday!
 Next Wednesday, we'll talk about interfaces



 Read Chapter 10
 Pick your teammates for Project 1
 Afternoon office hours canceled today due to meetings
 Office hours canceled next Tuesday between 3 and 4 p.m. due 

to meetings


	COMP 2000
	Last time
	Questions?
	Project 1
	Method practice
	Overloading
	Overloading example
	Objects
	Reference types
	Reference variables
	Compared to primitive variables
	A reference is just an arrow
	Invoking the constructor
	Calling methods
	Equivalence confusion
	Classes
	Templates for objects
	Anatomy of a class definition
	Members are data inside an object
	Data visibility
	Methods are ways to interact with objects
	Constructors
	Accessors
	Mutators
	Class Variables
	Static members
	Static rules
	Members can be constant
	Enums
	Enums
	Enums in switch statements
	Special enum features
	Enum feature examples
	Enums as full classes
	Enum continued
	Packages
	Classes are files, packages are folders
	Package conventions
	Imports
	Static imports
	Upcoming
	Next time…
	Reminders

