
Week 1 - Friday



 What did we talk about last time?
 Java features
 if and switch statements
 Loops
 Arrays
 Static methods







 Write a method with the following signature that converts a 
String representation of an integer into an int value

 public static int parseInt(String value)



 You're allowed to have two different methods with the same 
name, in the same class

 Doing so is called overloading
 However, the methods must either have a different number of 

parameters or different types of parameters so that the 
compiler can tell which one you're calling



 Two max() methods, one that finds the maximum of two 
values and another that finds the maximum of three

public static int max( int a, int b ) {
if( a > b )

return a;
else

return b;
}

public static int max( int a, int b, int c ) {
if( a > b && a > c )

return a;
else if( b > a && b > c )

return b;
else

return c;
}





 Variables that hold object types are called 
references

 A primitive variable holds a value
 A reference variable merely points to the 

location of the object

ham1
Ham ham2 = ham1;

ham2



 If we tell ham2 to take a bite away, it will 
affect the ham pointed at by ham1

 Remember, they are the same ham!

ham1
ham2.bite();

ham2



 Now consider int variables  x and y, both with value 37
 If we change x, it only affects x
 If we change y, it only affects y

int x = 37;
int y = x;
x++;
y--;

y
37

x
3738 36



 If you declare a lot of references, you have not created any 
objects, just lots of arrows (unlike primitive types)

Eggplant aubergine;
DumpTruck truck1;
Idea thought;

aubergine truck1 thought



 To call a constructor, you use the new keyword with the name 
of the class followed by parentheses:

 Perhaps there is a Ham constructor that lets you take a 
double that is the number of pounds that the ham weighs:

Ham ham1 = new Ham(); // Default constructor

Ham ham2 = new Ham( 4.2 ); //weight constructor



 To call methods on objects
 Type the name of the object
 Put a dot
 Type the method name, with the arguments in parentheses:

String s = new String("Help me!");
char c = s.charAt(3); //c gets 'p'
Ham h = new Ham(3.2);
h.bite(); // Takes bite out of ham
double weight = h.getWeight(); //Gets current ham weight



 In this example, the == operator will say they are different, but the equals() method 
will say that they are the same

 Every object has an equals() method
 Always call equals() to see if too objects are identical
 Only use == if you want to see if the two references are pointing at the exact same object

String s1 = new String("identical");
String s2 = new String("identical");
if( s1 == s2 )
System.out.println("Same!");

else
System.out.println("Different!");

if( s1.equals( s2 ) )
System.out.println("Same!");

else
System.out.println("Different!");





 An object is the actual data that you can use in your code
 A class is a template whereby you can create objects of a 

certain kind
 Class = Car
 Object = Mitsubishi Lancer Evolution X

 Just like int is a type and 34 is an instance of that type
 A key difference is that you can define new classes
 Classes contain members and methods



public class Name {
private int member1;
private double member2;
private Hedgehog member3;

public Name() {

…
}

public int method1( double x ){

…
}

}

Class definition

Member 
declarations

Constructor 
definition

Method
definition



 Members are the actual data inside an object
 They can be primitive types or other object types
 They are usually hidden (private) from the outside world

public class Point {
private double x; // member variable
private double y; // member variable

}



 private and public allow you to specify the scope or 
permissions of members and methods

 privatemeans that only methods from the same class can 
access an item

 publicmeans that any method can access the item
 protectedmeans that classes in the package and child classes 

can access the data (but not someone outside of the inheritance 
hierarchy)

 No modifier means "package private" or default
 Only code in the same package can access the item
 More restrictive than public and protected but less restrictive than 
private



 Methods allow you to do things
 Object methods usually allow you to manipulate the members
 They are usually visible (public) to the outside world
 Methods can be static or non-static
 Only non-static methods can interact with the members of an 

object



 Constructors are a special kind of method
 They allow you to customize an object with particular 

attributes when it is created

public class Point {
private double x; // member variable
private double y; // member variable

//constructor
public Point( double newX, double newY ){

x = newX;
y = newY;

}
}



 Because members are usually private, it is common to use 
methods specifically just to find out what their values are

 A method that just returns the value of a member variable is 
called an accessor

public double getX() { //accessor for x
return x;

}

public double getY() { //accessor for y
return y;

}



 Again, because members are usually private, it is common 
to use methods specifically just to change their values

 A method that just changes the value of a member variable is 
called a mutator

public void setX( double newX ) { //mutator for x
x = newX;

}

public void setY( double newY ) { //mutator for y
y = newY;

}





 Static members are stored with the class, not with the object
public class Item {

private static int count = 0; // one copy total
private String name; // one copy per object

public Item( String s ) {
name = s;
++count; // updates global counter

}

public String getName() { return name; }

public static int getItemsInUniverse() {
return count;

}
}



 Static members are also called class variables
 Static members can be accessed by either static methods or 

regular methods (unlike normal members which cannot be 
accessed by static methods)

 Static members can be either public or private



 Sometimes a value will not change after an object has been 
created:
 Example:  A ball has a single color after it is created

 You can enforce the fact that the value will not change with 
the final keyword

 A member declared final can only be assigned a value once
 Afterwards, it will never change





 An enum is a special kind of class that has pre-defined constant objects
 These objects are intended to represent a fixed collection of named 

things:

 Individual days can be referenced like static variables: Day.MONDAY or 
Day.FRIDAY

 Since enum values are constants, it's convention to name them in ALL 
CAPS

public enum Day {
SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, 
SATURDAY

}



 Enums can be used in switch statements to make decisions

 Note that only the value (SUNDAY) not the full name (Day.SUNDAY) is 
used

 This kind of behavior makes enums a useful way to record state 
information with a fixed number of values

switch(day) {
case SUNDAY: System.out.println("Ice Cream"); break;
case MONDAY: System.out.println("Garfield"); break;
case TUESDAY: System.out.println("Taco"); break;
case WEDNESDAY: System.out.println("Addams"); break;
case THURSDAY: System.out.println("Throwback"); break;
case FRIDAY: System.out.println("I'm in Love"); break;
case SATURDAY: System.out.println("Surf NYC"); break;
}



 Though they aren't often useful, enums have some 
information baked into them
 You can use the static values()method on the enum class to get 

an array containing all the enum values 
 You can call the ordinal()method on an enum object to get its 

zero-based numbering in the list
 You can pass a String into the static valueOf()method to 

retrieve the enum object with a given name



 Sometimes it's useful to iterate over all the enum values
 Or get their number
 Or map a name to the enum value, but that will crash if you 

don't spell them right

Day[] days = Day.values();
for(Day day : days)

System.out.println(day + " has index " + day.ordinal());

Day manic = Day.valueOf("MONDAY");
Day iDontHaveToRun = Day.valueOf("SUNDAY");
Day francais = Day.valueOf("DIMANCHE"); // Crashes!



 People usually use enums
simply as lists of constant 
values

 However, enums are 
actually full classes whose 
objects can contain 
constant data and methods

 Note that the data inside 
can't be changed

public enum Planet {
MERCURY(2440, 3.3E23, 5.79E7),
VENUS(6052, 4.9E24, 1.08E8),
EARTH(6371, 6.0E24, 1.50E8),
MARS(3390, 6.4E23, 2.28E8),
JUPITER(69911, 1.9E27, 7.78E8),
SATURN(58232, 5.7E26, 1.42E9),
URANUS(25362, 8.7E25, 2.87E9),
NEPTUNE(24622, 1.0E26, 4.50E9);

private int radius;      // km
private double mass; // kg
private double distance; // km



 Here are the methods for the Planet enum from the previous slide

private Planet(int radius, double mass, double distance) {
this.radius = radius;
this.mass = mass;
this.distance = distance;

}
public int getRadius() {

return radius;
}
public double getMass() {

return mass;
}
public double getDistance() {

return distance;
}

}





 To organize classes, they are often inside of packages
 This approach allows to tell the difference between two different 

classes with the same name that are in different libraries:
 java.util.List is the interface for list data structures
 java.awt.List is a class that stores GUI lists

 Packages correspond to folders with the same names
 Most packages are inside of other packages
 The default package (no package) should not be used for 

professional programming
 Since we are transitioning in this class, look carefully at 

assignment requirements for packages



 By convention, class names (and interface, enum, and 
exception names) start with uppercase letters, such as 
ArrayList

 Packages should be written in lowercase letters, such as 
java.util

 Periods are used to separate the parent packages from their 
child packages

 A common convention is to use the reversed domain name of 
your company or institution to make your packages unique
 We would be edu.otterbein



 When importing, you can import all of the classes in a package 
with an asterisk:
 import java.util.*;

 However, the asterisk does not import the classes in any sub-
packages

 If you want to import two classes that have the same name, one of 
them has to be called by its fully qualified name
 In other words, you can't import java.util.* and java.awt.*

because it wouldn't know which you mean when you say List
 You could import java.util.* and refer in code to java.awt.List

(which is ugly but doesn't happen too often)
 All classes in java.lang are automatically imported



 Are you tired of how verbose it is to write System.out.println() or 
Math.sqrt()?

 A feature called static imports allows you to access static methods and 
members without specifying the class name

 If you put this at the top of your program:

 You could write this:

 Instead of this:

import static java.lang.Math.*;
import static java.lang.System.*;

out.println(sqrt(3));

System.out.println(Math.sqrt(3));





 No class on Monday!
 Next Wednesday, we'll talk about interfaces



 Read Chapter 10
 Pick your teammates for Project 1
 Afternoon office hours canceled today due to meetings
 Office hours canceled next Tuesday between 3 and 4 p.m. due 

to meetings
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